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Abstract 

We propose an automatic image mosaicing 
method that can construct a panoramic image from 
digital still images. Our method is fast and robust 
enough t o  process non-planar scenes with free cam- 
era motion. 

The method includes the following two tech- 
niques. First, we use a multi-resolution patch-based 
optical flow estimation for making feature correspon- 
dences to  automatically obtain a homography. Sec- 
ond, we developed a technique t o  obtain a homogra- 
phy from only three points instead of four, in order 
to  divide a scene into triangles. 

Experiments using real images confirm the effec- 
tiveness of our method. 

1 Introduction 

Image mosaicing has become an active area of re- 
search in the fields of photogrammetry, computer vi- 
sion, image processing, and computer graphics. The 
applications include construction of aerial and satel- 
lite photographs, photo editing, creation of virtual 
environments and image compression. 

One conventional method is a cylindrical 
panorama that  covers a horizontal view for creat- 
ing virtual environments [3]. However, this method 
limits the camera t o  horizontal motion around the 
optical center, forcing the user t o  carry a tripod. 

Several other methods try to  avoid this limitation 
[8, 10, 13, 21, by using a planar projective trans- 
formation (homography). Given two images taken 
from the same viewpoint, or images of a planar scene 
taken from different viewpoints, the relationship be- 
tween the images can be described by a linear prG 
jective transformation called a homography. There 
are two types of conventional methods for obtain- 
ing homographies. One uses a non-linear minimiza- 
tion framework without any features [8, 101 and the 
other uses image features such as corners [13, 21. The  
problem of minimization-based methods is that they 
are slow to  converge and sometimes require good ini- 
tial manual estimation. Conventional feature-based 
methods require a lot of time t o  compute homogra- 
phies, because they do not have feature correspon- 
dences. 
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There has only been limited research [9, 61 fo 
a non-planar scene with unrestricted camera move- 
ment. However, these methods are numerically un- 
stable and computationally expensive because they 
incorporate many variables in a non-linear mini- 
mization framework. 

We propose a feature-based method which is fast 
and can deal with non-planar scenes with unre- 
stricted camera motion. Our paper makes two con- 
tributions. First, our method is faster a t  comput- 
ing homographies than previous methods, because 
we solve homographies linearly after making feature 
correspondences. Second, we describe a method for 
obtaining a homography from only three points, in- 
stead of four points in general, by using the epipolar 
constraint between images. This is for dividing the 
scene into several planes with triangles when we can- 
not regard the scene as a planar surface. 

The remainder of our paper is structured as  fol- 
lows. After reviewing the Lucas-Kanade optical flow 
estimation in section 2, we show how t o  apply it to  
image mosaicing. Section 3 describes our novel tech- 
nique for obtaining a homography from three sets of 
corresponding features. Section 4 presents our ex- 
perimental results using real scene images. We close 
with a discussion and ideas for future work. 

2 Feature-Based Image Registration 

We use small rectangular regions such as corners, 
what we call point features, to  obtain a homography. 
Here we show how t o  make correspondences by using 
optical flow estimation. 

2.1 Lucas-Kanade Method 

The  Lucas-Kanade method is one of the best 
methods of optical flow estimation, because it is fast 
t o  compute, easy t o  implement, and controllable be- 
cause of the availability of tracking confidence [I]. 
When the image brightness of an object is constant 
during the time periods t and t + S t ,  the intensity I 
a t  a point u = (x ,  y) has the following constraint. 

The Lucas-Kanade method assumes that neighbor- 
ing pixels in a small window have the same flow vec- 
tors. Then we can choose the displacement vector 



d so as to minimize the residue error E in a small 
region R, defined by the following equation [7]. 

Making the linear approximation that I ( u  + d )  x 
I (u)  + d&l(u) ,  we can solve the displacement d 
with the following equation. 

where I ( u )  = I(+, y, t )  , J ( u )  = I(+, y, t + T )  and 
g(u) is the derivative of I(u).  

The major drawback of the gradient methods, 
including the Lucas-Kanade method, is that they 
cannot deal with large motion. Coarse-tefine multi 
resolution strategy can be applied to overcome this 
problem. A big problem, however, still remains. 
Low-textured regions have unreliable results. We 
solved this problem in [4], with a dilation-based fill- 
ing technique after thresholding unreliable estimates 
at each pyramid level. 

2.2 Overlap Extraction 

We need to extract the overlapping region before 
applying the optical flow estimation, when the over- 
lapping region of images is less than about 50 %. 
This is because optical flow estimation may fail, even 
though our flow estimation incorporates a hierarchi- 
cal multi-resolution technique. 

We find a rough displacement by minimizing the 
sum of square difference (SSD), in the overlapping 
region, defined by the following equation. 

E(d)  = Cw(I1(x)  - 12(x + dN2 
M x N  (4) 

where E is the squared difference of an overlapping 
region w (size:M x N )  between image Il and I2 with 
the displacement d .  We use low-resolution images 
for faster computation. Figure 1 shows original im- 
ages and the extracted overlapping region. 

2.3 Feature Correspondence 

After obtaining the overlapping region of two im- 
ages, we first select good features in the first im- 
age from its image derivative and the Hessian [ll] .  
Next, we estimate sparse optical flow vectors for 
small rectangular patches by using the improved 
Lucas-Kanade method described in 2.1. For making 
a point correspondence, we interpolate the nearest 
four patch results bi-linearly in sub-pixel order. Fig- 
ure 2 shows the selected features and corresponding 
features. 

Figure 1: Extracted Overlapping Region 

Figure 3: Planar Projective Transformation 

2.4 Projective Planar Transformation 

When the scene is a planar surface or when the 
images are taken from the same point of view, im- 
ages are related by a linear projective transformation 
called a homography. Figure 3 illustrates the prin- 
cipal of the planar projective transformation. When 
we see a point M on a planar surface from two dif- 
ferent viewpoints C1 and C2, we can transform the 
image coordinates ml to ma using the following 
planar projective transformation matrix H [5]. 

where k is an arbitrary scale factor. This relation- 
ship can be rewritten using the following equations. 

When a point on the planar surface is invisible 
from C2 but visible from C1, we can generate the cor- 
responding point on image I2 by this transformation. 



(a) Selected Features (b) Corresponding Features 

Figure 2: Feature Correspondence 

Our method solves this matrix faster than previous 
methods because it uses a least squares method with 
four or more corresponding points, instead of using 
a non-linear minimization framework. 

3 Non-Planar Scene 

We propose a method that can construct a 
panorama for non-planar scenes with unlimited cam- 
era motion. If the assuming condition is not satis- 
fied, i.e., taking images of a non-planar scene from 
different viewpoints, there will be misregistration 
caused by motion parallax. Figure 5 (b) shows an 
example. Our method works on this situation with 
the following two steps. First, we divide a scene into 
multiple planes because the single plane assumption 
has significant errors. Since three points are mini- ., 
mum number of points to consist a plane, we trian- 
gulate a scene with corresponding feature points be- 
tween images by using the Delaunay triangulation. 

Second, we obtain the homography for each tri- 
angle. However, we need at least four points to ob- 
tain a homography since it has eight independent 
parameters. (It is a 3 x 3 matrix and is invariant to 
scaling.) We describe a novel technique to compute 
a homography from three points using the epipolar 
constraint. 

The epipolar constraint between two images is de- 
scribed by the fundamental matrix F ,  with a point 
m on an image I and the corresponding point m1 
on the other image I' as follows: 

Recently a good method has been developed to 
obtain a fundamental matrix between uncalibrated 
cameras [12]. By using this, we first obtain the fun- 
damental matrix between images from their corre- 
sponding points. By substituting equation (5) with 
(7), we have the following equation. 

Table 1: Processing Time 
I Function I Time (sec.1 I 

ver ap Extraction 

Blending 2 
Total 10 

Since H ~ F  means the outer product of vector m ,  
it should be skew symmetric: 

We obtain six equations from (9), because diagonal 
elements and the additions of skew symmetric ele- 
ments should be zero. We have already six equations 
from three sets of corresponding points with (5). We 
can compute a homography by least-squares with 
three points and the fundamental matrix, because a 
total of 12 equations are available for eight unknown 
parameters. 

4 Experiments 

This section introduces the results of applying our 
feature-based techniques to image mosaicing. These 
images were taken from different viewpoints with a 
hand-held digital still camera without a tripod. We 
set a patch size of 13 x 13 pixels for optical flow 
estimation and feature correspondences. 

4.1 Single Planar Scene 

Figures 4, 6 and 7 show the results of a single 
planar scene. Figure 6 with a size of 640 x 480 pix- 
els took ten seconds on a Pentium 300 MHz PC to 
process. Table 1 shows the detail of processing time. 



Figure 4: Landscape 

The time of feature matching includes obtaining 
the homography. We blended intensities weighted 
by the distance from the boundaries of the overlap- 
ping region. Figure 7 shows an example of vertical 
panoramas. 

4.2 Multiple Planar Scene 

Figure 5 shows the result of a multiple planar 
scene. Since the scene has a certain amount of depth 
range, we cannot regard it as a planar surface. The 
overlapping part of the image is divided into 40 tri- 
angles using feature points. The average of absolute 
intensity differences in the overlapping region has 
been reduced to 24.0, from 28.5 that using a single 
planar model. 

5 Conclusions 

In this paper, we have illustrated two novel tech- 
niques for constructing image mosaics for any scene 
with any camera movement. First, in order to  ob- 
tain a planar projective transformation for avoid- 
ing a limited cylindrical representation, we pre- 
sented a method based on image features, obtained 
automatically by using an optical flow estimation. 
The computational cost is much lower than conven- 
tional methods that use a non-linear minimization 
framework or image features without any correspon- 
dences. 

Second, for a scene that we cannot assume to be 
a single plane and with images taken from different 
viewpoints, we described a method of dividing im- 
ages into triangles with corresponding features. Our 
method provides the homography for each triangle 
from three points using the epipolar constraint, al- 
though conventional methods require four points to  
compute. The technique is fast and robust because 
it is linear. 

We showed that our feature-based method is 
faster and more robust than previous featureless 
methods, because it is based on linear techniques. 
In future work, we plan to develop a display method 
with which we can feel 3D-depth by stepping out of 
an optical center. 
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(a) Original images 
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(c) Created by a multiple planar model 

Figure 5: Multi Planar Mosaics 
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Figure 7: Planar Mosaics (Tower) 




